본문 바로가기
728x90
반응형

공부/<파이썬으로 만드는 인공지능>7

Ch 6 컨볼루션 신경망과 컴퓨터 비전 6.1 컨볼루션 신경망의 동기와 전개 감각 기관을 구성하는 수용장을 모방한 딥러닝 모델 컨볼루션 신경망(CNN) *컨볼루션+강화학습 결합을 통해 인공지능을 만들기도 한다. ex) 알파코, 화면영상분석: 컨볼루션 신경망, 게임 전략: 강화학습 6.2 컨볼루션 신경망의 구조와 동작 convolution: 신호에서 특징을 추출하거나 신호를 변환하는 데 사용하는 연산으로, 신호 처리, 영상 처리, 컴퓨터 비전 등에 널리 쓰인다. 수용장과 커널의 선형 결합으로, 커널을 이동하면서 계산을 수행하면 특징 맵을 얻는다. 입력과 같은 크기의 특징 맵이 생성되기 때문에 정보 손실이 없다. 수직 에지 특징 추출 커널: -1 0 1 -1 0 1 -1 0 1 수형 에지 특징 추출 커널: 1 1 1 0 0 0 -1 -1 -1 특.. 2023. 10. 29.
Ch5 딥러닝과 텐서플로 5.1 딥러닝의 등장 MLP: Multi-Layer-Perceptron 다층 퍼셉트론이 이미 등장했지만, 은닉층을 많이 추가해 신경망을 깊게 만들면 제대로 학습되지 않는 문제가 있다. 1. 오류 역전파 알고리즘은 여러 층을 거치면서 기울기 값이 점점 작아져 입력층에 가까워지면, 변화가 거의 없는 기울기 소실 문제가 발생한다. 2. 훈련 집합의 크기는 작은 상태 그대로인데, 추정할 매개변수는 크게 늘어 과잉 적합에 빠질 가능성이 커진다. 이에 따라 딥러닝이 등장한다!! 5.2 텐서플로 개념 익히기 tensorflow 딥러닝의 친구, numpy와 호환이 된다. 딥러닝에서는 데이터를 tensor로 표현한다. 텐서: 딥러닝에서의 다차원 배열 구조로 특징을 담는다. 가중치에서도 사용한다. 404x13 텐서 -> .. 2023. 10. 15.
Ch4 신경망 기초 퍼셉트론, 다층 퍼셉트론 4.1 인공 신경망의 태동 뉴런은 세포체, 수상돌기, 축삭으로 구성되어 뇌에서 서로 연결(시냅스)되어 서로 정보를 전달한다. 이렇게 연결된 망을 신경망이라 한다. 뉴런 당 1000개의 뉴런과 연결되어, 병렬로 정보를 처리한다. 이러한 뇌 구조를 착안한 아이디어가 인공 신경망이다. 4.2 퍼셉트론의 원리 퍼셉트론: 입력층과 출력층(결과)으로 구성된다. 선형분류를 한다. d차원의 특징 벡터를 가지면, 입력층에는 d+1개의 노드가 있다. 입력층과 출력층은 가중치 w를 갖는 edge로 연결되고, i번째 엣지는 x_i 특징과 가중치 w_i를 곱해 출력 노드로 전달한다. 0번째 노드의(좌측 최상단) 입력 x_0(바이어스 노드/편향)은 항상 1이다. 출력 노드는 d+1의 곱셈 결과를 모두 더.. 2023. 10. 8.
Ch 3 기계 학습과 인식 특징 벡터 각 특징들을 모아서 하나의 vector로 만든 것, 차원으로 표현한다. x=(x1, x2, x3, .... , xd) -> d차원 특징 벡터를 가짐 원-핫 인코딩: 집합의 크기를 벡터의 차원으로 하고, 표현하고 싶은 인덱스에만 1을 부여하고, 나머지는 0으로 하는 것. SVM: 유명한 기계 학습 모델 fit: 학습 predict : 예측 train:모델 학습용 test: 모델 측정용 규칙기반: 코딩으로 조건을 통해 분류, 비효율적 기계학습: 분류는 직접, 규칙만들기는 자동으로 딥러닝: 신경망 방식, 분류와 규칙만들기 모두 자동화 +데이터 수집도 자동화? 머신러닝의 과정: data수집-> feature 추출-> model 생성 -> predict overfit(과잉 적합): 오류를 과하게 허용하.. 2023. 10. 7.
Ch2 파이썬으로 시작하는 인공지능 AI는 오픈소스, 이미지로써는 많이 상용화되어있지만 음성 쪽은 아직 활성화되지 않았다. cloud 서비스를 클론코딩으로 구현해보아서 동작방식을 공부하는 기록을 추가해도 괜찮겠다는 생각이 들었다. 코딩에서 디자인(설계, 분석)이 중요한 비중을 차지한다. 상상하고 해결하는 것 matplotlib을 배우자 난수가 실제로는 난수가 아니라 난수처럼 보이게 하는 것이다? -> seed가 같기 때문에. 때문에 컴퓨터 시각으로 바꿔주는 방법이 있다. import로 필요한 모듈을 불러온다 오버로딩은 한 연산자로 여러가지 연산을 수행하는 것 1:N은 좋지 않은 함수. 결과가 여러가지기에 명료하지 않다. 좋은 주석이란 나에게도, 다른 사람에게도 알아보기 쉽게 작성하는 것. 대충 작성하면 시간이 지나고 난 후 알아볼 수 없다.. 2023. 10. 7.
머신러닝 visual studio 닷넷 ML.NET //Load sample data using ConsoleApp3; var sampleData = new MLModel1.ModelInput() { Col0 = @"Crust is not good.", }; //Load model and predict output var result = MLModel1.Predict(sampleData); var sentiment = result.PredictedLabel == 1 ? "Positive" : "Negative"; Console.WriteLine($"Text: {sampleData.Col0}\nSentiment: {sentiment}"); Console.Write($"P1 : {result.Score[0] * 100} %, P2: {result.Score[.. 2023. 10. 4.
Ch1 인간 지능을 흉내 내는 인공지능 인공지능의 역사나 정의에 대한 전반적인 내용을 배움. 딥러닝과 의료기록을 접목시킨 새로운 서비스를 연구개발하자는 내용 #4 Teachable Machine Train a computer to recognize your own images, sounds, & poses. A fast, easy way to create machine learning models for your sites, apps, and more – no expertise or coding required. teachablemachine.withgoogle.com 티처블머신은 누구나 인공지능 응용을 제작할 수 있는 서비스를 제공한다. 컵, 지우개, 고양이 인형의 총 3개의 사진을 웹캠으로 20개정도 촬영후 모델학습 학습된 모델에 각 물건.. 2023. 9. 5.
728x90
반응형